9.4 Resultants of Hydrostatic Pressure Forces

9.4 Resultants of Hydrostatic Pressure Forces Example 1, page 1 of 3

1. To prevent water pressure from pushing gate $A B$ open, a small extension, or lip, is provided at A. If the gate is $4-\mathrm{m}$ wide (measured perpendicular to the plane of the figure), determine the force acting on the lip. The density of water is $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

9.4 Resultants of Hydrostatic Pressure Forces Example 1, page 2 of 3

The pressure must be p_{AB} at all other points at the same elevation. Since these points lie 5 m below the free
(1) Since AB is horizontal, the pressure p_{AB} acting on it is uniform.
surface of the water,

$$
\begin{aligned}
\mathrm{p}_{\mathrm{AB}} & =\rho \mathrm{g} \times 5 \mathrm{~m} \\
& =\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~m}) \\
& =49.05 \times 10^{3}\left(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) / \mathrm{m}^{2} \\
& =49.05 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\
& =49.05 \mathrm{kN} / \mathrm{m}^{2} \\
& =49.05 \mathrm{kPa}
\end{aligned}
$$

9.4 Resultants of Hydrostatic Pressure Forces Example 1, page 3 of 3

```
(3) Free-body diagram of gate AB
```


Equilibrium equation for gate AB

$$
\sqrt{+} \Sigma \mathrm{M}_{\mathrm{B}}=\mathrm{F}_{\mathrm{A}}(3 \mathrm{~m})-(196.2 \underbrace{20 \mathrm{kN} / \mathrm{m})(3 \mathrm{~m})(3 \mathrm{~m} / 2)}_{\text {resultant of } \mathrm{w}}=0
$$

Solving gives
Moment arm of pressure resultant

$$
\mathrm{F}_{\mathrm{A}}=294 \mathrm{kN} \quad \leftarrow \text { Ans }
$$

9.4 Resultants of Hydrostatic Pressure Forces Example 2, page 1 of 3

2. Hydraulically-operated equipment is designed to transform a relatively small input force into a much larger output force. For the system shown, determine the weight W that can be supported by the piston at B when a $200-\mathrm{N}$ force is applied to the piston at A .

9.4 Resultants of Hydrostatic Pressure Forces Example 2, page 2 of 3

9.4 Resultants of Hydrostatic Pressure Forces Example 2, page 3 of 3

(5) Free-body diagram of piston B

9.4 Resultants of Hydrostatic Pressure Forces Example 3, page 1 of 4

3. During construction, gate $A B$ is temporarily held in place by the horizontal strut CD. Determine the force in the strut, if the gate is 4 -m wide.

Density of water $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

9.4 Resultants of Hydrostatic Pressure Forces Example 3, page 2 of 4

(1) The water pressure varies linearly from 0 to p_{B}, where

$$
\begin{aligned}
\mathrm{p}_{\mathrm{B}} & =\rho \mathrm{g} \times(2 \mathrm{~m}+3 \mathrm{~m}) \\
& =\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~m}) \\
& =49.05 \mathrm{kPa}
\end{aligned}
$$

(2) Convert the pressure to a force per length by multiplying by the width, 4 m :

$$
\begin{align*}
\mathrm{w}_{\mathrm{B}} & =\mathrm{p}_{\mathrm{B}} \times 4 \mathrm{~m} \\
& =(49.05 \mathrm{kPa}) \times 4 \mathrm{~m} \\
& =196.20 \mathrm{kN} / \mathrm{m} \tag{1}
\end{align*}
$$

9.4 Resultants of Hydrostatic Pressure Forces Example 3, page 3 of 4

(3) Resultant of distributed load

(4) triangle, or one-third of the distance from the base to the opposite vertex:
$(1 / 3)(2 m+3 m)=1.667 \mathrm{~m}$ above point B

9.4 Resultants of Hydrostatic Pressure Forces Example 3, page 4 of 4

(5) Free-body diagram of gate AB

(6) Equilibrium equation
$\xlongequal{+} \Sigma \mathrm{M}_{\mathrm{B}}=\left(\mathrm{F}_{\mathrm{CD}}\right)(3 \mathrm{~m})-(490.5 \mathrm{kN})(1.667 \mathrm{~m})=0$
solving gives

$$
\mathrm{F}_{\mathrm{CD}}=273 \mathrm{kN}
$$

$$
\leftarrow \text { Ans }
$$

This is a large force. Most likely more than one strut would be used.

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 1 of 10

4. Determine the magnitude and line of action
of the resultant hydrostatic force acting on a $1-\mathrm{m}$
wide section of the seawall. Assume that the
density of sea water is $\rho=1.02 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 2 of 10

(1) Integration can be used to calculate the resultant of the pressure forces acting on the curved wall, but it is easier to consider a free body consisting of a portion of the water behind the sea wall.

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 3 of 10

(2) Free-body diagram of region of ABC

(3) Force per length, $\mathrm{w}_{\mathrm{B}}=($ pressure at B$) \times(1-\mathrm{m}$ distance normal to plane of figure $)$

$$
\begin{aligned}
& =(\rho \mathrm{g} \times 12 \mathrm{~m})(1 \mathrm{~m}) \\
& =\left(1.02 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})(1 \mathrm{~m}) \\
& =120.1 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 4 of 10

6) The magnitude of the weight, W, can be calculated by using information from a table of properties of planar regions as shown below:

(7)

In our particular example, the length of the side opposite the vertex $=12 \mathrm{~m}=\mathrm{a}$, and $\mathrm{h}=10 \mathrm{~m}$, so

$$
\begin{align*}
\text { Area } & =2 \mathrm{ah} / 3 \\
& =2(12 \mathrm{~m})(10 \mathrm{~m}) / 3 \\
& =80 \mathrm{~m}^{2} \tag{1}
\end{align*}
$$

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 5 of 10

(8) Free-body diagram of region ABC (repeated)
(9)
9) $\mathrm{P}=$ resultant of pressure forces

$$
\begin{aligned}
& =\text { area of } \mathrm{w} \text {-diagram } \\
& =(1 / 2)(12 \mathrm{~m})(120.1 \mathrm{kN} / \mathrm{m}) \\
& =720.6 \mathrm{kN}
\end{aligned}
$$

(10) $\mathrm{W}=$ weight

$$
\begin{aligned}
& =\rho \times \mathrm{g} \times \text { area } \times \text { width } \\
& =\left(1.02 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(80 \mathrm{~m}^{2}\right)(1 \mathrm{~m}) \\
& =800.5 \mathrm{kN}
\end{aligned}
$$

(11) Equilibrium equations
$\xrightarrow{\perp} \sum \mathrm{F}_{\mathrm{x}}=0:-\mathrm{R}_{\mathrm{x}}+720.6 \mathrm{kN}=0$

Solving gives

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}=720.6 \mathrm{kN} \\
& \mathrm{R}_{\mathrm{y}}=800.5 \mathrm{kN}
\end{aligned}
$$

(12) Resultant
$\begin{aligned} & 800.5 \mathrm{kN} \\ & \mathrm{R}=\sqrt{(720.6 \mathrm{kN})^{2}+(800.5 \mathrm{kN})^{2}} \\ &=1.077 \mathrm{MN}\end{aligned}$

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 6 of 10

(13) R is the force of the seawall on
the water. The force of the
water on the seawall is equal and opposite.

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 7 of 10

(14) To determine the line of action of the resultant force, consider a free-body diagram of region ABC again.

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 8 of 10

(17) To locate the centroid, we again make use of a table of properties of planar regions as shown below:

(18) In our particular example, the length of the straight side adjacent to the vertex $=10 \mathrm{~m}=\mathrm{h}$, and so the centroid is located $4 \mathrm{~m}[=(2 / 5)(10)]$ to the right of of C.

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 9 of 10

19 The free-body diagram of region ABC can be re-drawn with the known distances specified.
 anywhere along its line of action (Principle of transmissibility). We can simplify our calculations by considering the resultant R to act at point D where the line of action intersects the left edge of the free body.

9.4 Resultants of Hydrostatic Pressure Forces Example 4, page 10 of 10

Solving gives the vertical distance below point C to the line of action of the resultant:

$$
\mathrm{d}=3.56 \mathrm{~m}
$$

$$
\leftarrow \text { Ans. }
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 5, page 1 of 6

5. Determine the distance h for which the gate is just about to open.

Neglect the weight of the gate. The specific weight of the fluid is γ.

(1) The value of h will not depend on the gate width (distance measured perpendicular to the plane of the figure) because the width would cancel out of the equation for the sum of moments about the support C. Accordingly we will base our calculations on a $1-\mathrm{ft}$ width of gate.

9.4 Resultants of Hydrostatic Pressure Forces: Example 5, page 2 of 6

(2) Free-body diagram of gate (distributed forces)
(3) Pressure:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{B}}=(2 \mathrm{ft}) \times \gamma \\
& \mathrm{p}_{\mathrm{D}}=(2 \mathrm{ft}+\mathrm{h}) \times \gamma
\end{aligned}
$$

1-ft width
(4) Force per length:

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{B}}=\mathrm{p}_{\mathrm{B}} \times(1 \mathrm{ft})=(2 \gamma) \times 1=2 \gamma \\
& \mathrm{w}_{\mathrm{D}}=\mathrm{p}_{\mathrm{D}} \times(1 \mathrm{ft})=(2+\mathrm{h}) \gamma \times 1=(2+\mathrm{h}) \gamma
\end{aligned}
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 5, page 3 of 6

Resultant force on AB

(6) Resultant acts through centroid of triangle (at a distance equal to one-third of the height of the triangle)
9.4 Resultants of Hydrostatic Pressure Forces: Example 5, page 4 of 6
(7) Resultant force on BC

9.4 Resultants of Hydrostatic Pressure Forces: Example 5, page 5 of 6

(8) Resultant force on CD

9.4 Resultants of Hydrostatic Pressure Forces: Example 5, page 6 of 6

(9) Free-body diagram (resultant forces)

(11) Equilibrium equation

$$
\digamma \Sigma M_{C}=0:(-2 \gamma)(2 / 3 \mathrm{ft})-(12 \gamma)(3 \mathrm{ft})+(2 \gamma \mathrm{~h})(\mathrm{h} / 2)+\left(\mathrm{h}^{2} \gamma / 2\right)(2 \mathrm{~h} / 3)=0
$$

Solving gives

$$
\mathrm{h}=4.0 \mathrm{ft}
$$

\leftarrow Ans.

9.4 Resultants of Hydrostatic Pressure Forces: Example 6, page 1 of 3

6. Concrete is poured into the open top of a form to produce a ramp. If the ramp is $0.8-\mathrm{m}$ wide, determine the minimum mass m needed to keep the form from lifting off the ground.

Mass of form $=60 \mathrm{~kg}$
Density of concrete $=\rho_{c}=2.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

(1) We can solve the problem by finding the resultant of the pressure of the concrete acting -on part AB of the form. But we would have to compute the length AB and also compute the angle the resultant makes with the vertical. Although the problem can be done in this manner, it is easier to consider a free body consisting of the form together with the concrete. Thus let's first find the resultant force of the pressure of the floor pushing up on the concrete.

(2) Pressure at $\mathrm{D}=\left(2.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
\begin{array}{cc}
\text { ! } & \times(0.4 \mathrm{~m}) \\
! & =9.418 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}
\end{array}
$$

Distributed load (force per length) $=$
pressure \times width of gate
$=\left(9.418 \times 10^{3} \mathrm{~N}\right)(0.8 \mathrm{~m})$
$=7.534 \times 10^{3} \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
\text { Resultant force }= & \left(7.534 \times 10^{3} \mathrm{~N} / \mathrm{m}\right) \\
& \times(0.7 \mathrm{~m}+0.5 \mathrm{~m}) \\
= & 9.041 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 6, page 3 of 3

(3) Free-body diagram of form together with concrete
(4) Weight of form $=(60 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
=588.6 \mathrm{~N}
$$

(6) Equilibrium equation

$$
+\uparrow \sum \mathrm{F}_{\mathrm{y}}=0: 9.041 \times 10^{3} \mathrm{~N}-\mathrm{mg}-588.6 \mathrm{~N}-6.404 \times 10^{3} \mathrm{~N}=0
$$

Setting g equal to $9.81 \mathrm{~m} / \mathrm{s}^{2}$ and solving gives

$$
\mathrm{m}=209 \mathrm{~kg}
$$

\leftarrow Ans.
(5) Weight of concrete $=\rho_{c} g \times$ volume

$$
\begin{aligned}
= & \left(2.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)[(1 / 2)(0.7 \mathrm{~m}) \\
& \times(0.4 \mathrm{~m})(0.8 \mathrm{~m})+(0.5 \mathrm{~m})(0.4 \mathrm{~m})(0.8 \mathrm{~m})] \\
= & 6.404 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 7, page 1 of 5

7. Determine the minimum weight W of gate BC required to keep the gate closed. The gate is $2-\mathrm{ft}$ wide and of uniform density. The specific weight of water is $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$.

9.4 Resultants of Hydrostatic Pressure Forces: Example 7, page 2 of 5

(1) If we attempt to solve the problem by considering the pressure acting directly on BC, then we have to calculate the length and angle of inclination of BC.

9.4 Resultants of Hydrostatic Pressure Forces: Example 7, page 3 of 5

at B,

$$
\mathrm{p}_{\mathrm{B}}=\gamma \times 2.5 \mathrm{ft}=2.5 \gamma
$$

at C,

$$
\mathrm{p}_{\mathrm{C}}=\gamma \times(2.5 \mathrm{ft}+3 \mathrm{ft})=5.5 \gamma
$$

Distributed loads (force per length):

$$
\begin{align*}
& \mathrm{w}_{\mathrm{B}}=\mathrm{p}_{\mathrm{B}} \times(\text { width of gate })=(2.5 \gamma)(2 \mathrm{ft})=5 \gamma \tag{1}\\
& \mathrm{w}_{\mathrm{C}}=\mathrm{p}_{\mathrm{C}} \times(\text { width of gate })=(5.5 \gamma)(2 \mathrm{ft})=11 \gamma \tag{2}
\end{align*}
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 7, page 4 of 5

(4) Free-body diagram of gate BC
together with the water under BC
 about to lose contact with ground.
(8) The trapezoidal distributed load from the fluid acting on the right side of the free body can be considered to be the sum of a rectangular and triangular distributed load.

9.4 Resultants of Hydrostatic Pressure Forces: Example 7, page 5 of 5

(9) Equation of equilibrium

+ $\Sigma \mathrm{M}_{\mathrm{B}}=0: W(2 \mathrm{ft})+12 \gamma(4 / 3 \mathrm{ft})-4 \mathrm{w}_{\mathrm{C}}(2 \mathrm{ft})-3 \mathrm{w}_{\mathrm{B}}(3 / 2 \mathrm{ft})-(1 / 2)\left(\mathrm{w}_{\mathrm{C}}-\mathrm{w}_{\mathrm{B}}\right)(3 \mathrm{ft})(2 / 3 \times 3 \mathrm{ft})=0$

Resultant force from uniform load on bottom

Resultant force from uniform load on right side

Resultant force from triangular load on right side
(10) Substituting $\mathrm{w}_{\mathrm{B}}=5 \gamma\left(\right.$ Eq. 1), $\mathrm{w}_{\mathrm{C}}=11 \gamma($ Eq. 2), and γ $=62.4 \mathrm{lb} / \mathrm{ft}^{3}$ into Eq. 3 and solving gives

$$
\mathrm{W}=3,510 \mathrm{lb} \quad \leftarrow \text { Ans. }
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 8, page 1 of 4

8. Determine the magnitude and line of action of the resultant hydrostatic force acting on the semicircular end of the tank. The tank is filled to the top with water. The specific weight of water is $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$.

(1) Because the end of the tank is not of uniform width, we have to use integration to compute the magnitude of the resultant.

9.4 Resultants of Hydrostatic Pressure Forces: Example 8, page 2 of 4

(2) Pressure force on elemental area dA
(5) Distance $=-y$ (Insert a minus sign to get a positive distance- y is negative in the region shown)
(6) Differential force:

$$
=2 \sqrt{4^{2}-y^{2}} d y
$$

Solve for x and substitute
$\mathrm{dR}=$ pressure \times area

$$
=[\gamma(-\mathrm{y})] \times\left[2 \sqrt{4^{2}-\mathrm{y}^{2}} \mathrm{dy}\right]
$$

(7) Resultant force:

$$
\begin{aligned}
\mathrm{R} & =\int \mathrm{dR} \\
& =\int_{-4}^{0}[\gamma(-\mathrm{y})]\left[2 \sqrt{4^{2}-\mathrm{y}^{2}} \mathrm{dy}\right] \\
& =2,662 \mathrm{lb} \quad \leftarrow \text { Ans. }
\end{aligned}
$$

(8) Use $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$ and evaluate with the integral function on a calculator.

9.4 Resultants of Hydrostatic Pressure Forces: Example 8, page 3 of 4

(9) To determine the line of action of the resultant, equate the moment of the resultant to the integral of the moment of the differential force, dR .

(11) Moment of R about x axis $=$ Integral of moment of dR about x axis

$$
\begin{equation*}
\mathrm{R} \times \mathrm{d}=\int(-\mathrm{y}) \times \mathrm{dR} \tag{1}
\end{equation*}
$$

or

$$
2,662 \mathrm{lb} \times \mathrm{d}=\int_{-4}^{0}(-\mathrm{y})\left[-2 \nmid \mathrm{y} \sqrt{4^{2}-\mathrm{y}^{2}}\right] \mathrm{dy}
$$

Evaluating the integral by using the integral function on a calculator and then solving for d gives

$$
\mathrm{d}=2.36 \mathrm{ft} \quad \leftarrow \text { Ans }
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 8, page 4 of 4

(12) We could have saved some work by using a table of moments of inertia as follows: Eq. 1 is

$$
\begin{aligned}
\mathrm{R} \times \mathrm{d} & =\int(-\mathrm{y}) \times \mathrm{dR} \\
& =\gamma \underbrace{\int \mathrm{y}^{2} \mathrm{dA}} \\
& =[\gamma \text { pressure } \times \mathrm{dA})] \mathrm{dA}
\end{aligned} \quad \begin{aligned}
& =\mathrm{I}, \text { the momentent of inertia of the } \\
& \text { area about the } \mathrm{x} \text { axis. }
\end{aligned}
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 1 of 8

9. Determine the magnitude and line of action of the resultant
hydrostatic force acting on the end of the tank, which is filled to
the top with water. The density of water is $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

1) Because the end of the tank is not of uniform width, we have to use integration to compute the magnitude of the resultant.

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 2 of 8

(2) Let's divide the end of the tank into three regions.

Region 1
Region 2

Region 3
(3) Because of symmetry, Regions 1 and 3 have the same resultant force. Thus we need to consider only one of the regions. Let's choose Region 3.

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 3 of 8

\square Calculation of resultant of pressure on Region 3
(5)

Elemental area:

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 4 of 8

(7) Resultant force for Region 3

$$
\begin{aligned}
\mathrm{R}_{3} & =\int \mathrm{dR}_{3}-\underbrace{\text { Eq. } 1} \\
& =\rho \mathrm{g} \int_{0}^{1.1} \overbrace{1.1-\mathrm{y})(\mathrm{y} / 2) \mathrm{dy}}
\end{aligned}
$$

Use the integral function
on a calculator to evaluate

$$
\begin{equation*}
=0.1109 \rho \mathrm{~g} \tag{2}
\end{equation*}
$$

(8) We also need to determine the line of action of R_{3}. We can do this by equating the moment produced by R_{3} acting along its line of action to the integral of the moment produced by dR_{3}.

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 5 of 8

9) Moment of R_{3} about FC

(11) Moment of differential force about FC

10) Equating moments about the top edge FC gives
$\begin{aligned} 0.1109 \rho \mathrm{~g} \text { by Eq. } 2\end{aligned} \mathrm{R}_{3} \times \mathrm{d}_{3}=\int(1.1-\mathrm{y}) \mathrm{dR}_{3}$ Eq. 1
Evaluating the integral and solving for d_{3} gives

$$
\begin{equation*}
\mathrm{d}_{3}=0.5501 \mathrm{~m} \tag{3}
\end{equation*}
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 6 of 8

(13) Resultant force acting on Region 2

Pressure at point $E=(2.1 \mathrm{~m}) \rho \mathrm{g}$
Distributed force (force per length), $\mathrm{w}_{\mathrm{E}}=$ pressure \times width

$$
\begin{aligned}
& =2.1 \rho \mathrm{~g} \times 1.5 \mathrm{~m} \\
& =3.15 \rho \mathrm{~g}
\end{aligned}
$$

(14) Resultant force

$$
\begin{align*}
\mathrm{R}_{2} & =(1 / 2)(2.1 \mathrm{~m})(3.15 \mathrm{gg}) \\
& =3.3075 \rho \mathrm{~g} \tag{4}
\end{align*}
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 7 of 8

(15) Line of action of R_{2} passes through centroid of triangle.

(16) Total force acting on end of tank

$$
\begin{align*}
&=\mathrm{R}_{2}+2 \mathrm{R}_{3} \\
& \text { by Eq. } 4 \\
&=3.3075 \mathrm{pg}+2(0.1109 \rho \mathrm{~g}) \tag{6}\\
&=3.5293 \rho \mathrm{~g}
\end{align*}
$$

Using $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ gives

$$
\mathrm{R}=34.6 \mathrm{kN} \quad \leftarrow \text { Ans }
$$

9.4 Resultants of Hydrostatic Pressure Forces: Example 9, page 8 of 8

(17) Determine the line of action of the resultant R by equating the moment of R to the sum of moments of R_{1}, R_{2}, and R_{3} :

$$
\Sigma \mathrm{M}_{\mathrm{BC}}: \mathrm{Rd}=\mathrm{R}_{1} \mathrm{~d}_{1}+\mathrm{R}_{2} \mathrm{~d}_{2}+\mathrm{R}_{3} \mathrm{~d}_{3}
$$

Substituting the $R, R_{1}, d_{1}, R_{2}, d_{2}, R_{3}$, and d_{3} values from the figures above into this equation and solving gives

$$
\mathrm{d}=1.347 \mathrm{~m} \quad \leftarrow \text { Ans }
$$

